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ABSTRACT

This document describes the work performed during

1973 on the design, analysis and performance of a 20kW

Rollup Solar Array capable of meeting the design require-

ments of a solar electric spacecraft for the 1980 Encke

rendezvous mission. To meet the high power requirements

of the proposed electric propulsion mission, solar arrays

on the order of 186.6 m2 have been defined. Because of

the large weights involved with arrays of this size, con-

sideration of array configurations is limited to lightweight,

large area concepts with maximum power-to-weight ratios.

Items covered in this document include solar array

requirements and constraints, array concept selection and

rationale, structural and electrical design considerations,

and reliability considerations. The study was concluded

by identifying the areas which require further study.
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I. INTRODUCTION

This document describes the work performed during 1973 on the Solar

Electric Propulsion System Integration Technology (SEPSIT) Solar Array Study.

The purpose of the study was to functionally describe a 20 kW Rollup Solar

Array capable of meeting design requirements of a solar electric spacecraft for

a 1980 Encke Rendezvous Mission. Section II describes the Encke Rendezvous

Mission and identifies the solar array requirements and constraints. The solar

array concept selection is described in Section III. The solar options are dis-

cussed as well as the selection rationale for the General Electric Array Con-

cept. Section IV is devoted to describing the General Electric Solar Array

Concept. Items covered in this section include system design, array blankets,

solar panel actuator, slip ring assembly, structural components and mass

properties summary. In addition, prototype tests and results are described.

Unmodified, the General Electric solar array concept is not capable of inter-

facing with the solar electric spacecraft and meeting all of the imposed

requirements. Thus, significant modifications were made to the GE concept.

Section V discusses the application of the GE solar array concept to the SEPSIT

requirements. Structural design considerations are discussed including a dis-

cussion of prototype scale-up considerations. Electrical design considerations

are discussed which include cell characteristics, voltage range selection,

radiation effects, cabling losses, and uncertainty. The actual electrical design

configuration is discussed in detail together with electrical performance

predictions at 200-day intervals throughout the Encke rendezvous mission.

Additional studies presented in Section V include cabling, and interfaces.

Section VI discusses reliability considerations. Section VII completes the study

with a discussion of areas requiring further work.

JPL Technical Memorandum 33-668
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II. SEPSIT MISSION

The application of solar electric propulsion (SEP) technology for exploring

space beyond the reach of ballistic missions has been investigated by JPL for

many years. Recently, the application of this technology has concentrated on an

Encke Rendezvous mission with a 1978 scheduled launch date. A major consid-

eration in power subsystem design studies for a solar electric mission in this

time frame is that only minor modifications in existing technology could be con-

sidered. Major technology improvements would be outside the scope of consid-

erations required to realistically define the spacecraft.

The Encke rendezvous mission requires that the electric propulsion sub-

system provide thrust during the entire mission trajectory which extends from

Earth at 1.0 AU to 3. 3 AU and returns to 1. 0 AU for rendezvous with the comet.

The solar array design selected to meet the above mission has evolved

from the rollup solar array JPL development program initiated in 1967. The

rationale for the selection of the JPL/GE rollup solar array over other light-

weight solar array concepts is discussed in Section III of this document. The

requirements and constraints imposed on the solar array design are outlined

below:

A. Solar Array Requirements and Constraints

1. Performance

(1) Power

The solar array shall be designed to supply power in accordance

with the power utilization summary shown in Table 1.

(2) Voltage

The array voltage shall be in the range of 200 to 400 volts through-

but the mission during steady state mode.

(3) Telemetry

The solar array shall provide telemetry output sufficient to denote

its status.

JPL Technical Memorandum 33-668 3



Table 1. Power Utilization Summary

0 0 0 @/@ 0/@ /0 0/@0 @
Flight Phases Liftoff Sun Acquis. (6 Thrust) (5 Thrust) (4 Thrust) (3 Thrust) (2 Thrust) (1 Thrust) (6 Thrust)

Flight Phases Liftoff & Batt. Ch. and and and and and and and
t. Chg. Cru. Sci. Cru. Sci. Cru. Sci. Cru. Sci. Cru. Sci. Cru. Sci. Eng. Sci.

Power source Battery S/A S/A S/A S/A S/A S/A S/A S/A

Time in days 1 Hr 2 36 24/16 28/14 41/32 118/96 540

Spacecraft, \V 393 545 360 374 360 360 360 360/292 530

SEP modules, W 267 420 163 143 139 118 115 99 163

Thruster pwr cond, W\ 0 0 15,500 14,400 11,520 8,640 5,760 2880/1440 15,350

Dist losses, W 0 20 200 160 120 100 80 60/40 200

SEP veh totals, W 412 965 16,223 15,077 12, 139 9,218 6,315 3399/1871 16,243

1% power marg, W 96 162 150 121 92 63 34/19 162

S/A design pwr, W - 1,061 16, 385 15,227 12,260 9,310 6,378 3433/1890 16,405

o
0
1'

a



2. Structural

(1) Dimensions

The solar array volume and shape in stowed configuration, including

the release and deployment mechanisms, shall satisfy the following

requirements:

(a) Launch vehicle shroud volume restrictions

(b) Spacecraft structural interface requirements

(c) Solar Array deployment complexity (reliability)

(2) Weight

The solar array weight shall be such that the specific power to

weight ratio exceeds 66 watts per kilogram at a solar intensity of

140 mW/cm 2 (1 AU) and a temperature of 52. 0°C.

(3) Structural Rigidity-stowed Configuration

The solar array shall be designed to pass the launch vibration and

shock levels not determined at the present time.

3. Environmental

(1) Vacuum

The solar array shall be designed to operate mechanically in a

-6
vacuum of 10 6 torr or less.

(2) Thermal

The solar array shall be designed to operate mechanically at

temperatures in the range of 52 0 C to -100 0 C.

(3) Radiation

Solar array proton degradation design margin shall be in accord-

ance with the radiation environment specified in "Environmental

Design Criteria for SEPSIT. "

(4) General

The solar array shall be designed to operate in a controllable

manner while being exposed to the various environments specified

in "Environmental Design Criteria for SEPSIT. "

JPL Technical Memorandum 33-668 5



4. Component and Material Selection. Wherever possible the solar

array shall be designed in accordance with 66 watts/Kg rollup array technology.

Specific constraints include the use of:

(1) 0. 020 cm, 2 cm X 2 cm, N/P silicon solderless solar cells.

(2) 0. 08 cm microsheet coverglass.

(3) Silver expanded metal interconnection for solar cells.

(4) 0. 005 cm Kapton substrate sheet.

5. Reliability. The solar array design shall incorporate design

practices that maximize the probability that the solar array will operate suc-

cessfully in both mechanical and electrical modes.

6 JPL Technical Memorandum 33-668



III. SOLAR ARRAY CONCEPT SELECTION AND RATIONALE

To meet the high power requirements of the proposed electric propulsion

mission, very large solar array areas, on the order of 92. 9 to 185.8 m 2 (1000

to 2000 ft 2 ), have been defined. Because of the large weights involved with

arrays of this size, array configurations for the Encke rendezvous

spacecraft are limited to lightweight large area concepts with maximum

power-to-weight ratios. In addition, the arrays must be compatible with space-

craft simplicity and array gimbaling requirements.

By arbitrarily limiting attention to concepts which promise power-to-

weight ratios in excess of 66 watts per kilogram, and considering only array

configurations which have previously been developed to various stages of readi-

ness, the list of candidate arrays is reduced to the following:

(1) The GE rollup array.

(2) The Fairchild Hiller rollup array.

(3) The Ryan rollup array.

(4) The Hughes rollup array.

(5) The TRW flat pack array.

(6) The Royal Aircraft Establishment flat pack array.

(7) The Lockheed flat pack array.

(8) The Messerschmidt-Bolkow-Blohm flat pack array.

First, the GE rollup array has the following advantages:

(1) Extensive test experience.

(2) Center support mounting which allows easy array gimbaling.

(3) Structural simplicity which increases reliability and allows easy

extrapolation to the much larger SEPSIT array.

(4) Partial deployment capability with full structural stiffness in the

partially deployed state.

(5) Retraction capability.

JPL Technical Memorandum 33-668 7



In contrast, the Fairchild Hiller and Ryan rollup arrays are essentially

similar to the GE array, but are more complex, have much less test experience,

and are end mounted which complicates gimbaling. Though the Hughes array

has extensive test experience, it simultaneously deploys two arrays in opposite

directions from an end supported drum. This two array configuration is not

compatible with the array orientation of the SEPSIT spacecraft.

As a class, the early flat pack arrays are less desirable because they

exhibit very low structural stiffness in the partially deployed state and gener-

ally do not allow retraction. However, more recent flat packs, in particular

the TRW concept and a concept currently being developed by Lockheed for the

Manned Space Station, do allow retraction. These latter two concepts are

single boom arrays essentially similar to the GE rollup array except that the

cell blanket is Z-folded in a container instead of being rolled on a drum.

Though they tend to be somewhat more compact than the GE array they do not

allow partial deployment and have little if any stiffness during the deployment

or retraction. The effect of this lack of stiffness on spacecraft attitude control

during deployment and retraction needs to be analyzed. Generally these flat

pack arrays suffer from lack of test experience.

On the advantage side, the flat pack cell blankets lend themselves to

modular construction and do not require slip ring or other power transfer

devices. After deployment, the arrays are center supported like the GE rollup

and thus also allow easy gimbaling.

In summary, the GE rollup array is superior to other rollup arrays for

SEPSIT application. Its advantage over recent flat pack concepts, in particular

the TRW array, is less clear cut and is based primarily on the lack of test

experience with these arrays. Because the flat packs have certain design

advantages (modular blanket construction, and absence of slip rings for power

transfer) their development should be watched closely. However, because they

are currently in a very preliminary design stage, the GE array was adopted as

the baseline array in the SEPSIT study.

8JPL Technical Memorandum 33-668



IV. GE SOLAR ARRAY CONCEPT DESCRIPTION

A. General Description

An engineering test model was designed, fabricated and tested by the

General Electric Company under contract to JPL. The array provides 23. 2 m

of deployed solar cell module area and was fabricated to represent a flight-type

design (Fig. 1), except for a limited solar cell coverage; 4000 solar cells were

bonded to the substrates, with the remaining area occupied by glass platelets

to simulate the solar cell mass and bending stiffness. The locations of the

various components on the engineering test model are shown in Fig. 2.

The array power-to-weight ratio is 66 W/kg. This ratio is based on the

ability of the array to generate 2500 Watts of power at 55 0 C under air mass

zero illumination at one (1.0) AU. Cell efficiency is specified by area perform-

ance of 107. 6 W/m (10 W/ft2) of gross module area. The cell selected was

0. 020 cm thick, 2 cm by 2 cm, with 3. 8 cm of active area per cell. The cal-

culated array power for the cell under 1 AU conditions is 2523 Watts at 102 Vdc.

The major components of the solar array system are described below:

1. Solar array substrate. The solar cells mounted on two flexible

substrates of 0.005-cm Kapton H film fabricated from copper-clad Schjel-Clad

L-7510 etched to form a conductor electrical bus strip system. The bus in turn

connects to the feed-through section of the drum and the slip rings. The exposed

copper bus strips on the rear side of the substrate are covered with Kapton

silicon pressure-sensitive tape. Foamed RTV 560 cushioning buttons are

deposited on the rear side of the substrate at the corners of each solar cell.

These buttons provide the required interlayer, cushioning the stowed

configuration.

2. Solar panel actuator. The solar panel actuator is a Bi-stem

deployable boom unit designed and developed by Spar Aerospace Products, Ltd.

The boom elements, the components which provide the actuation force for

deployment and form the primary structure in the deployed configuration, have

a nominal outside diameter of 3.4 cm (1.34 inches). The boom material is

0. 018 cm (0. 007 inches) thick and is prestressed to form an overlapped tube

in the deployed position. The boom is silver plated on its outside surfaces to

TPL Technical Memorandum 33-668 9
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Fig. 2. Solar Array Structural Components
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reduce the temperature gradients in the boom when one side is exposed to

solar radiation and the other side is in shadow.

3. Storage drums. The two storage drums in the system form the

backbone of the stowed configuration. The drums rotate approximately 15 turn

to deploy or retract the array. Each drum includes a shell, outboard end cap,

inboard end cap, and edge guides. The drum shells are 1. 196 m (47. 10 inches)

long, 0.081 cm (0.032 inches) thick sheet magnesium rolled into a 20.32 cm

(8 in.) diameter cylinder, which is closed with a lap-butt joint utilizing 1.9 cm

(0.75 in.) wide strip magnesium bonded with Epon 934.

The inboard end cap assembly houses the two main bearings which allow

the storage drum to rotate with respect to the support shaft. The constant

torque negator spring motor, which provides the substrate preload force, is

mounted on the inboard end cap with the output spool coaxial with the main bear-

ings. A slip ring assembly, which functions to transfer array power signals

across the rotary joint between the drums and the center support, is then

mounted to the inboard end of this output spool. The outboard end cap serves

as the supporting interface for the drum outer end during launch. It contains a

tapered hole which mates with a tapered plug in the outboard end support. Two

edge guide flanges are mounted on each storage drum to provide control forces

to the substrate edge if required during retraction.

4. Center support. The center support consists of a magnesium

center tube, two machined magnesium end fittings, and two magnesium face

sheets. The center tube is pinned to the end fittings, and face she.ets are

riveted to the tube end fittings. One face sheet provides for the electrical con-

nector installation and, together with the other face sheet, transmits shear

loads. The end fittings provide the interface pads for the vehicle structure and

the solar panel actuator.

5. Leading edge member. The leading edge member is the structural

element on the outer-most edge of the substrate. In the deployed configuration,

this member transmits the 17. 8-N (4 lb) substrate preload force from the array

substrates to the boom tip. In the stowed configuration, the leading edge mem-

ber functions to restrain the outer substrate wrap and to cage the Bi-stem

boom element.

12 JPL Technical Memorandum 33-668



6. Outboard end support. This arm carries the stainless steel tapered

plugs which interface with the outboard end cap and leading edge member.

Attachment of the movable arm to the vehicle-mounted bracket is through a

hinge joint. A torsion spring which mounts on the hinge pin furnishes 1130 N-cm

(100 in. -lb) of torque in the stowed configuration. The release of the support

is accomplished by a separation nut/separation bolt/bolt catcher combination.

The torsion spring forces the movable arm to rotate about the hinge pin through

an angle of approximately 0. 17 rad. The storage drum and the leading edge

member are thus released to permit deployment of the solar panel actuator.

The solar array structural components described above are illustrated in Fig. 2.

B. Environmental Test Program

The solar panel engineering test model was subjected to a comprehensive

test program which included in summary the following tests:

(1) Deployed dynamics tests to provide necessary data on the dynamic

characteristics of the deployed array. During the tests, the array

was deployed vertically downward in a vacuum chamber and the

system was excited with motion at the center support. Out-of plane

symmetric (Z-axis), out of plane anti-symmetric (torsional) and

in-plane (Y-axis) excitations were performed. Figure 3 is a photo-

graph of an array deployed in dynamic tests.

(2) Pyrotechnic-induced shock tests to measure acceleration levels on

the array components resulting from the simultaneous firing of both

separation nuts (each armed with two active squibs) on the outboard

end supports.

(3) Thermal-vacuum tests to measure response of the array under

deployed transient, low-temperature stowed, low-temperature

deploy and retract, stowed transient and high-temperature soak

and high-temperature deploy and retract conditions.

(4) Acoustic noise test to monitor response of system exposed to 60 s

of random incidence, reverberent sound with an overall sound

pressure level of 150 dB.

JPL Technical Memorandum 33-668 13



Fig. 3. 66 W/Kg Deployed Dynamics Test
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(5) Stowed vibration test in Y, Z, and X-axes. The tests consisted of

the following:

(a) Several 10 W-level sinusoidal sweeps.

(b) An acceptance level sinusoidal sweep at two-thirds of the

specification level to evaluate linearity of system response

and to provide a final assessment of risk associated with the

full-level qualification input.

(c) Sinusoidal qualification sweep.

(d) Random noise testing with the same sequence (low-level,

acceptance-level and qualification-level testing).

The test program, in general, achieved the major objective of providing a

technology data base for this type of large area, lightweight, deployable solar

array. Many test techniques applicable to other design configurations were

conceived, developed and demonstrated. The most severe environment for the

coverglass and solar cells was the stowed vibration test. There is no breakage

pattern to indicate a possible cause for the damage. Evaluation of the cushion-

ing material and location employed to protect cell-coverglass damage should be

made for future arrays. Table 2 lists the cell and coverglass breakage result-

ing from the environmental tests. Table 3 summarizes the environmental tests

and test levels to which the engineering test model was subjected.

JPL Technical Memorandum 33-668 15



Table 2. Cell and Coverglass Breakage Resulting from
Environmental Test Program

Percent Percent Percent
Test Broken Glass Broken Broken

Platelets Cells Coverglass

Pyro shock 0. 043 0.025 0. 100

Thermal vacuum 0.213 0.400 0. 825

Acoustic 0. 084 0. 325 0. 225

Stowed vibration 0. 121 0. 900 1.975

35 ambient
deploy/retract 0. 008 0. 100 0. 125

cycles

Total breakage 0. 469 1.750 3.250

16 JPL Technical Memorandum 33-668



Table 3. Summary of Environmental Tests and Test Levels

Environment Level

Pyrotechnic shock As generated by array
pyrotechnics

Thermal-vacuum tests

Stowed -130 C

+1400C

Thermal shock between -1300C
and 1400C

Deployed -1300C

+140 C

Thermal shock between 1300C
and 140*C

Deployment Low temp (-1300C)

High temp (1400C)

Acoustic noise 150 dB overall spectrum
specified

Vibration

Sinusoidal 5-10 Hz 2.29 cm DA

10-225 Hz 4. 6 g's (O-P)

225-550 Hz 0. 00447 DA

555-2000 Hz 27 g's (O-P)

Random 90-700 Hz 1 G 2 /Hz

20-90 Hz increasing at 6 dB/
octave

700-2000 Hz decreasing at 6 dB/
octave

Mechanical shock 250 G, 0. 5 millisecond terminal
sawtooth

JPL Technical Memorandum 33-668 17
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V. APPLICATION OF GE SOLAR ARRAY CONCEPT
TO SEPSIT MISSION REQUIREMENTS

A. Structural Design Considerations

1. Introduction. As described in Section III the selection of the GE

rollup solar panel concept was partially based on the structural design advan-

tages of this panel configuration, and on its extensive test history. However,

it should be pointed out that in addition to the concept, a large number of com-

ponent design details are also directly transferable to the larger SEPSIT panel.

As a result, scaling the 2. 5 kW GE panel design up to the 10 kW SEPSIT size

does not appear to represent a large new development program. Some changes

in the baseline GE design will be necessary, however.

Required changes in the baseline 2. 5 kW design result from a number of

changes in the solar panel design requirements. The most obvious change is

the growth of the power requirement from 2. 5 kW to 10 kW per solar panel.

The space vehicle/solar panel structural interface requirements have also been

updated to include our improved definition of the space vehicle attachment

requirements. Similarly the mission environmental requirements have been

updated for the specific launch vehicle under consideration and for the specific

Encke mission flight environmental requirements.

The impact of these changes in the solar panel design requirements is

discussed in the following subsections.

2. Extrapolating up to a 10 kW size panel. The primary structural

change associated with adapting the 2. 5 kW prototype panel to the SEPSIT space

vehicle is the increased size required to meet the 10 kW power requirement.

As a result of the power increase, the solar cell blanket must be approximately

four times larger and thus four times heavier. This requires that the support-

ing structure must be stronger to survive the same launch loads with the same

margin. In addition, the width of the array should increase to prevent the array

from being four times longer, and thus requiring a very long and heavy boom.

The length of the array and the diameter of the boom also control the natural

frequencies of the deployed panel.
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From the above it is clear that increasing the size of the panel presents

a number of complex tradeoffs. The key parameters associated with scaling the

prototype panel to the 10 kW size are the following:

(1) The width of the panel as controlled by minimizing system weight,

conforming to space vehicle integration desires, and conforming to

solar cell blanket width and boom actuator width requirements.

(2) The width of the solar cell blanket as controlled by conforming to

overall panel width desires, minimizing circuit voltage losses, and

conforming to solar cell module and bus bar spacing requirements.

(3) The lowest natural frequency of the deployed panel as controlled by

the boom stiffness and length.

(4) The length and diameter of the boom as controlled by the panel

length desires, lowest deployed natural frequency desires, minimum

weight desires, and minimum boom development cost desires.

(5) The structural qualification test levels as determined by the launch

vehicle, the space vehicle design, the solar array structural inter-

face design, and the qualification testing and loads analysis

philosophy.

In addition to the above key parameters there is the consideration as to

what extent the larger SEPSIT panel should try to minimize costs by adapting to

current 2. 5 kW panel component designs. For example, the existing boom

could be used at the expense of building a panel four times as wide as the proto-

type panel and accepting the corresponding factor of two reduction in deployed

natural frequency. Because the drum weight would increase substantially with

such a design, a more viable approach would be to try to adapt to a larger off-

the-shelf boom diameter. Increasing the length of a boom requires much less

development than developing a new boom diameter and its corresponding

deployment mechanism.

Similar arguments apply to using some existing support structure compo-

nents and accepting some redesign of others. The feasibility of using some

existing prototype component designs with little or no modification is enhanced

by the fact that the 2. 5 kW prototype panel was designed for launch loads

considerably in excess of those anticipated for SEPSIT.
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3. Extrapolating to SEPSIT launch loads. The launch vibration

loading occurs during boost into earth orbit and has two main components, (1)

acoustic derived excitation due to interaction of the spacecraft with the surround-

ing acoustic noise field, and (2) launch vehicle derived excitation which is

motion transmitted to the spacecraft from the launch vehicle via the spacecraft's

adapter structure.

(1) Acoustic derived launch vibration

The acoustic derived excitation is generally high frequency with

most excitation occurring around 300 Hz. This acoustic derived

excitation generally governs the design of spacecraft components

which are not part of the spacecraft's load carrying structure.

Such components, like the boom actuator and the slip rings, gener-

ally have first-mode natural frequencies above 50 Hz and are

strongly excited by high-frequency excitation. Acoustic derived

excitation is generally considered to be random in frequency content
2

and is specified by its power spectral density in units of g /Hz.

The level of 1 g 2/Hz is an upper bound level for small spacecraft

components and has served as the very conservative (harsh) level

in the development of the 2. 5 kW prototype panel.

The reason the level is very conservative for a 2. 5 kW panel is that

the force required to vibrate a spacecraft component increases with

the component's weight. Because the excitation force is limited by

the acoustic pressure forces and the strength of the component sup-

port structure, heavy components are generally subjected to lower

vibration levels than small light components. As a first cut, the

launch excitation level is roughly proportional to one over the square

root of the component's mass. For the 2. 5 kW panel no reduction

was made, and the "small component" level was used directly.

For the design of the larger 10 kW SEPSIT panels it is anticipated

that the random vibration qualification level will be reduced sub-

stantially, or deleted in favor of the acoustic noise test. The

acoustic test was conducted on the 2. 5 kW prototype panel and was

found to be more representative of flight excitation.
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(2) Launch vehicle derived launch vibration

Launch vehicle derived excitation is generally low frequency with

the most critical excitation occurring below 50 Hz. This excitation

generally governs the design of large spacecraft systems with low

natural frequencies. Though the structure of small solar arrays

is relatively stiff and may be sized by the acoustic derived vibration

levels, large solar arrays with lower stowed natural frequencies

tend to find the launch vehicle derived vibration critical. In the

JPL/General Electric 66-watt/kg Rollup Solar Array program, a

sinusoidal excitation of 4. 6 g's (O-P) was used as the low-frequency

vibration level. Because this excitation corresponds to overall

launch vehicle/spacecraft vibration, subsystem mass has less effect

on excitation level, and the same level is applicable to the larger

10 kW panels.

The major components excited by the low frequency excitation are

the solar cell blankets and the storage drums and their supports.

Only the storage drums and their supports are affected by the

increased size of the 10 kW panel. The loads in these components

will increase because of the increased mass of the blankets which

they support.

In the design of the 2. 5 kW prototype panel, the strength of the

drums and support structure was determined using a very conser-

vative (high) blanket loading. This was necessary because the com-

plex behavior of the wrapped blankets vibrating on the drums was

not amenable to normal dynamic analysis methods. During subse-

quent vibration testing it was observed that the blankets have a very

low maximum Q. This implies that the loads are considerably less

than those assumed in the design of the G. E. prototype array. As

a result the components of the 2. 5 kW panel may have considerable

design margin and thus may require only minor redesign to handle

the loads anticipated for the 10 kW panel.
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(3) Low-frequency large displacement interface motion

The third type of launch loading imposed on the solar panel structure

is low-frequency, large -displacement, out-of-phase interface

motion. This type of motion occurs when the entire space vehicle

vibrates with large amplitudes at frequencies below the first reso-

nant frequency of the solar panel. When the solar panel attaches to

the space vehicle at widely spaced interface points, the points may

have significant motions relative to one another. When the space

vehicle is much stiffer than the solar panel, as it must be to support

the panel, these motions can create high structural loads if the

panel is supported in a statically indeterminate manner. The GE

rollup solar design attaches to the space vehicle at three points, in

a statically indeterminate manner.

Because of its statically indeterminate support the G. E. solar panel

concept requires the stiffness of the entire spacecraft structure

connecting the outboard-end-supports and the center-support to be

significantly stiffer than the solar panel drum/center-support

assembly. In addition, low-frequency spacecraft deflection must

not lead to excessive relative movement between the solar panel

outboard end support and center support spacecraft interfaces.

Though the support stiffness and relative motion requirements are

not too difficult to meet for the 2. 5 kW solar panel, they become

more significant as the width of the panel increases. To evaluate

the impact of the solar panel support requirements on the SEPSIT

10 kW panels, a dynamic analysis of the combined solar array/

space vehicle system was undertaken (Reference 1, Section IV-B-2).

The results of the study indicate that there does not appear to be a

significant problem in meeting the solar panel interface require-

ments. However, a sensitive area pointed out by the study is the

relative motion observed between the outboard ends of the solar-

panel drums and the out-board-end-support tapered plugs which

engage and support the drums. This motion results in the plugs

disengaging from the drums during large space vehicle deflections.
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One means of correcting the above problem is to support the

outboard ends of the drums on members which are fastened to, and

allowed to move with the drums. This concept is sketched in

Fig. 4.

In this modified out-board-end-support concept the ends of the

drums are supported from the space vehicle on separable bipods.

The vertex of the bipod is attached to the outboard ends of the drums

with a spherical bearing and separation device. After launch the

separation device is activated and the bipods swing clear of the

solar panel drums. As with the original out-board-end-support

design, the bipod supports also support the leading edge member

and prevent the drum from unrolling during launch. The leading

edge member and drum are released when the bipods swing clear.

Figure 5 shows the solar panels mounted onto the SEPSIT space

vehicle in the stowed (launch) configuration.

4. SEPSIT solar array configuration selection. As discussed above

there are a number of structural design considerations which enter into the

selection of a baseline solar array configuration. Among these are the

following:

(1) Space vehicle power requirements

(2) Space vehicle configuration requirements

(3) Weight limitations

(4) Stiffness limitations

(5) Requirements for retraction

(6) Inherited technology

(7) Environmental requirements

(8) Development costs

These considerations contributed to the selection of the GE rollup array

concept for the SEPSIT space vehicle. Once the GE concept was selected a

number of configuration trades were performed to establish a baseline config-

uration. These trades made use of the extensive data acquired during the

66 watt/kg solar array development program and the parametric extrapolation
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techniques described in Ref. 2. The extrapolation techniques were incorporated

into a general purpose computer program for extrapolating from the structural

performance characteristics of the prototype array to the characteristics of

proposed SEPSIT array configurations (Ref. 3).

Initial trades similar to those described in Section V-B of Ref. 4 defined

the minimum weight solar panel as having as low a deployed natural frequency

as possible consistent with attitude control and panel fabrication requirements.

This led to the selection of deployed natural frequencies in the 0. 02 to 0. 04 Hz

range. With the desired frequency range selected, further trades established

the optimum panel width for minimum weight as being in the 4 to 4. 5 m (13 to

15 foot) range. This range was compatible with the spacecraft configuration

and interface requirements.

Following the rough sizing, detailed solar cell and bus bar layouts were

conducted as described elsewhere in this report. These layouts established the

detailed dimensions of the solar cell blankets. With the blanket dimensions

available, the extrapolation computer program (RUSAP) was used again to deter-

mine the minimum weight panel consistent with the deployed natural frequency

requirements. During this study it was determined that the minimum deployed

natural frequency was constrained to be higher than about 0. 02 Hz. This con-

straint was imposed by the requirement that the tension in the solar cell blankets

be sufficient to roll the blankets on to the drums during panel retraction. The

66 watt/kg solar array development program established the minimum tension

at about 7. 0 N/m (0. 5 ibs/ft).

Using the minimum blanket tension requirement, the computer program

determined the minimum weight boom consistent with boom buckling considera-

tions. This was followed with an analysis of the weights of the other structural

elements. The performance characteristics of the final baseline configuration

of one solar panel are summarized in Tables 4 and 5.
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Table 4. Deployed Array Parameters

Required power = 10000. 0 watts

Blanket area = 93. 23 m2 (1003. 6 ft 2

Blanket width = 1. 879 m ( 6. 16 ft)

Blanket length = 24. 845 m ( 81. 46 ft)

Array width = 3. 978 m ( 13. 04 ft)

Array length = 25. 150 m ( 82. 46 ft)

Actuator width = 0.221 m ( 0. 72 ft)

Leader length = 0. 305 m ( 1. 00 ft)

Blanket unit wt = 0. 88 kg/m 2  ( 0. 180 ib/ft 2)

Blanket tension = 14. 5 N/Blanket ( 3. 25 lb/blanket)

Applied boom load = 0. 500 of boom buckling load

Buckling load = 57.8 N ( 13. 00 lb)

Boom stiffness EI = 3707. 0 N-m 2  (8965. 0 lb ft 2 )

Boom diameter = 0. 0493 m ( 1. 94 in. )

Boom thickness = 0. 00025 m ( 0. 010 in.)

Boom unit weight = 0. 57 kg/m ( 0. 38 ib/ft)

Boom modulus (E) = 0. 200 + 12N/m 2  ( 0. 4180 + 10 lb/ft 2)

Boom matl density = 7930. O kg/m 2  ( 495. 0 lb/ft 3)

Boom efficiency = 0. 80 effective (I)

Calculated sym.
freq. = 0.018 Hz

Calculated asym.
freq. = 0. 029 Hz
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Table 5. Calculated Base Structure Parameters (Launch
Acceleration = 0. 50 Baseline Level)

Total blanket weight = 83. 02 kg (182. 86 lbs)

Deployed boom weight = 14. 37 kg ( 31. 64 lbs)

Leading edge beam weight = 1. 10 kg ( 2. 42 lbs)

Outboard end support assy wt. = 5. 62 kg ( 12. 37 lbs)

Drum shell wt. = 8. 85 kg ( 19. 50 lbs)

End cap + guide wt. = 5. 83 kg ( 12. 84 lbs)

Total drum as sy weight = 14. 68 kg ( 32. 34 ibs)

Center support wt. = 1. 83 kg ( 4. 03 lbs)

Boom actuator wt. = 7. 76 kg ( 17. 09 Ibs)

Bearing assy wt. = 2. 73 kg ( 5. 22 lbs)

Negator assy wt. = 0. 89 kg ( 1. 96 lbs)

Slipring + harness wt. = 4. 17 kg ( 9. 19 lbs)

Support shaft wt. = 1. 83 kg ( 4. 03 lbs)

Total center support assy wt. = 18. 85 kg ( 41. 53 Ibs)

Total solar array wt. = 137. 63 kg (303. 16 lbs)

Power to weight efficiency = 72. 66 watts/kg ( 32. 99 watts/lb)

B. Electrical Design Considerations

1. Introduction. This section considers the parameters. which

influence the electrical design performance of the solar array.

The electrical characteristics of the 0.020 cm thick solar cells are

described over the range of the mission environment. The rationale for the

voltage range selection is discussed and a summary of the effects of the pre-

dicted solar flare proton environment for the Encke rendezvous mission on the
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power output of the solar array is presented. The major sources of uncertainty

associated with the prediction of array performance is examined. Performance

measurement uncertainty for 3.3 AU is not considered due to the lack of avail-

able data at the present time.

Evaluation of the cabling required to achieve the electrical interconnection

between each solar panel section and the slip ring harness is made and a

proposed configuration is presented. The array thermal profile is discussed

and in the last part of this section, the spacecraft mission trajectory assumed

for power performance prediction is identified.

2. Solar cell electrical characteristics. Electrical performance

parametric data was generated on 2 ohm-cm, N/P silicon solar cells, 0. 020 cm

(8 mil) thick, 2 cm x 2 cm, SiO coating, solderless, with Ag-Ti contacts. All

data presented in this section represents the average of twelve cells.

The electrical parametric studies performed consisted of generating cur-

rent voltage characteristics of the solar cells over an appropriate range of

temperature-intensity. A multi-cell thermal vacuum test chamber was employed

in conjunction with a solar simulator, which approximates the intensity and

spectrum of space sunlight.

A Spectrolab Model X25L Mark II, close-filtered, dry nitrogen-purged

solar simulator was used throughout the test program. Balloon flight standard

cells comprising an intensity reference cell and separate cells having narrow-

bandpass filters were mounted within the test chamber. The latter cells were

used to determine the spectral quality of the solar simulator by observing its

red-to-blue ratio during test.

Electrical connection to each cell was made with four wires to prevent

voltage drop across the current-carrying pair from influencing the voltage

reading. The solar cells are bonded to a 0. 318 cm (0. 125 in.) thick copper

plate using General Electric RTV-560 silicon adhesive and primer. The elec-

trical characteristics of each cell tested are obtained in the form of a current-

voltage curve using a Hewlett Packard Model 7030 XY recorder. The short-

circuit current and open-circuit voltage parameters are obtained on a five-place

readout, integrating-type digital voltmeter. The operating temperature of the

solar cells was controlled within plus or minus 0. 5°C using copper-constantan

thermocouples and a proportional temperature controller. The cell temperature
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was varied in increments of 20 degrees between temperature extremes of

plus 100 and minus 800C.

Following the generation of the current voltage characteristics, short

circuit current, open circuit voltage, current at maximum power, voltage at

maximum power, and maximum power points were picked off. The current

voltage curves of the twelve cells at each different test condition were averaged.

Tables 6 through 10 present parametrically average values of the five

parameters identified above.

3. Voltage range selection

(1) Introduction

This study was performed to determine the impact of power subsys-

tem operating voltage upon the design, performance and reliability

of the solar array, power distribution and power conditioning func-

tions. Three voltage ranges were selected for the study: 50-100,

100-200, and 200-400 volts, because they were compatible with the

voltage ranges of candidate electric propulsion power conditioners.

The study also included the assessment of potential problems

related to design, manufacturing, handling, testing, and component

limitation. This section summarizes the results of the study and

concludes with the recommendation that the 200-400 volts range be

selected for the subsystem operating voltage.

(2) Results and conclusions

The results and conclusion reached in the study of each major power

subsystem element are summarized below:

(a) Solar array. A rollup solar array with a voltage output

between 50 to 200 volts at 1 AU, and power levels up to 10 kW

can be designed and built using conventional techniques, pro-

vided that additional development effort is directed to solve

problems associated with assembly, handling and testing of

the large flexible array blankets. Solar array designs having

output voltages of 50 to 400 volts are relatively free from the

effects of space plasma in planetary missions and are sub-

stantially below the voltages that are believed to be affected

by most dense regions of the ionosphere.
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Table 6. Average Short Circuit Current (Isc, mA)

SCLAR
INTEIS IT
(MW1CM*.*2) 5.CC 15.00 25.00 50.00 100.CO 140.00 250.00

CEL TEIP.
(IEG. C)

-8C.CC 3.83
-6C.CC 4.29
-4CJCC 4.26 11.61 21.50 40.176 84.43 114.57 210.52
-2C.CC 4.26 12.36 21.52 42.95 85.39 .117.67 216.50

C.CC 4.44 12.96 21.54 43.57 89.44 121.45 219.09
20.CC 4.36 13.29 22.C2 44.71 87.56 122.82 223.70

4C0CO 4.5C 13.34 22.16 44.93 8R.56 125.55 221.97
6C.CC 4.72 13.76 22.72 45.93 90.86 126.14 __.225.86

.8CC 227.74
ICC.CO 233.39

o

0



Table 7. Average Open Circuit Voltage (Voc, mV)

o

SCLAR

INTENSITY
(MWIC,**2) 5.CC 15.C 25.O 50.00 10.C O 140.00 250.00

CELL TEtuP.
(CEG. C)

00 , Cg C C 2)-0
o-C.CC 722.07

-6C.CO 6E~.25
-4C ;C0 632.48 67.9C -677.73 695.07 709.90 715.65 71.73

-2C.CC 5e4.51 624.C7 629.57 651.92 665.40 677.98 685.73

C.CC 54C.71 5F0.23 583.92 608.07 623.85 636.23 649.01

2C.CC 4E9.69 533.23_ 537.07 561.67 574.23 594.15! 607.07

4CCO0 439.65 4. 4 C H491.57 517.19 533.57 547.371 563.20

6C.CO 391.31 434.4C i442.23 470.30 486.23 502.49i 516.57

80.CC 473.82

ICC.Cc 429.24



Table 8. Average Maximum Power Current (Imp , mA)

SCLAR
INTE NSITY
(Mk/C**2) 5.CC_ 15.CC 25.00 50.00 O1C.CO 140.00 250.00

CELL' TEMP;
(CE. C)

-8aCCC 3.25 -0.00 -0.00 -0.00 -0.CO -0.00 -0.00
-6C.CC 3.87 -C.CC -C.CO -0.00 -C.CO -0.00 -0.00
-4C.CC 3.71 10.5C 19.53 38.56 81o91 110.83 203.35
-2C.CC 3.72 11.07 19.73 39.76 79.83 113.25 204.58

C CC 3.91 11.7C 19.61 40.84 82.17 113.42 206.25
2C C 3.86 11.92 12C.30 41.72 8C.75 114.63 205.58
4C.CO 3.93 12.01 19.67 41.80 81.33 117.04 204.50
6C;C0O 4.14 12.2C 19.48 41.49 81.CO 116.2_5_ _203.42
8C.CO -C.CC -0.CC -C.00 -0.00 -0.00 -0.00 202.67

1CCJCC -C.CO -0.CC -0.CO -0.00 -0.CO -0.00 206.50

0

()

0



Table 9. Average Maximum Power Voltage (Vmp mV)
mp

SOLAR
INTENSI T
(MW/CM**2) 5.CC 15.0C 25.CO 50.00 100.00CO 140.00 250.00

CILkt TENP.
(EEG. C)

-SCCC 61,.33 -0.CC -C.C0 -0.00 -0.C00 -0.00 -0.00
-6C.CC 5e.6 -0.CC -C.CO -0.00 -0.CO -0.00 -0.00
-4C.CC 53C.83 %91.67 600.00 612.08 608.33 613.75 600.83
-20.CO 475.83 51.67 545.C0 567.92 575.00 579.00 573.33
CCC 444.17 tC1.67 498.33 521.67 535.00 545.00 539.17

2C.CC 4C4.17 458.33 450.CO 470.42 478.33 500.83 498.33
4 .C 3 6 2 .5C 413.33 4 01.i67 428.33 425.CO 0 442.67 446,.67
6CICC 3C3.33 365.CC00 350.00 387.50 390.00 404.17 404.17
C.CGC -C.CO -0.CC -C.00 -0.00 -0.00 -0.00 362.50

100ICCC -C.CC -0.00 -0.00 -0.00 -0.00 -0.00 314.17

U,-



Table 10. Average Maximum Power (Pmax, mW)

SCLAR
INTENSITY
(MW/CM**2) 5.CC 15.0C 25.CC 50.00 100.CO 140.00 250.00

CHLE TEMP.
(EC. C)

-8c.CC 2.C2 -0.CC -C.00 -0.00 -0.00 -0.00 -0.00
-6c.cC 2.27 -0.CC -G.CO -0.00 -O.CO -0.00 -0.00
-4C.CO 1.98 6.21 11.72 23.55 49.83 68.01 122.12

-2C.CC 1,77 6.12 10.76 22.64 45.90 65.57 117.34
C.CO 1.74 5.88 9.78 21.27 43.96 61.83 111.19

2CCO 1.55 5.47 r9.13 19.62 38.62 57.35 102.38

4C.CC 1.42 4.93 7 7.90 17.92 34.56 51.77 91.34

-_ C.CC 1.25 4.45 6.82 16.09 31.59 46.98. 82.18

S8CC0 -C.CC -O.CC -C.CO -0.00 -c.CO -0.00 73.50

ICC.C0 -C.CC -O.CC -0.00 -0.00 -0.00 -0.00 64.92

O



Calculation of the solar array design based on the GE

engineering model has shown that the specific power

density (watt/kg) is greater at the highest voltage

design of 200 to 400 volts for all power levels. The

data obtained are summarized in Table 11.

(b) Power distribution system. Analysis of the power distribu-

tion determined that the least power loss and the least weight

are obtained within the design voltage range of 200 to 400 volts.

The data obtained are summarized in Table 12.

(c) Pre-regulator and propulsion housekeeping. The pre-

regulator efficiency calculations show that the efficiency is

somewhat higher within the input voltage range of 100 to

200 volts. However, the power processed by the pre-regulator

is less than 4%0 of the total solar array power generated and

processed and has little overall design impact.

The pre-regulator and inverter designs are considered to be

essentially state-of-the-art over the entire voltage range of

50 to 400 volts. The study assumed that high voltage transis-

tors are available and would be qualified and accepted.

4. Radiation study. In this section the effects of the predicted solar

flare proton environment for the Encke Rendezvous (1980) Mission on the power

output of the SEPSIT Solar Array are considered. Figures 6, 7, 8, 9, and 10

define the predicted solar flare environments. These curves define probabilities

of encountering fluences of solar flare protons having kinetic energies greater

than 10, 30, and 100 MeV. The environment is independent of direction of

incidence. The probability values presented are the probabilities that the

fluence will exceed Fluence (F) at energies greater than Energy (E). Figures 6

through 10 were used to generate log-log plots of fluence ((>E) versus proton

energy with days from launch and probability as parameters. The equivalent

10 MeV proton fluence was calculated according to:

10 MeV = (>E) - 4(>E +AE ] D(E,t)
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Table 11. Solar Array Voltage and Power Density

Voltage at IAU

Power
Launch

Output Acceleration 50V
in

Watts /Panel g's
Power Density Power Density Power Density

Watt/kg Watt/kg Watt/kg

2. 5 kW 9.0 66.8 67. 60 68.2

2. 5 kW 4. 5 81.2 82. 18 82.9

5.0 kW 9.0 53.3 53. 9 54.7

5.0 kW 4.5 70. 1 70.9 71.9

10.0 kW 9. 0 42.8 43.4 44.0

10.0 kW 4. 5 56.6 57. 5 58. 1

Table 12. Voltage Range and Weights Analysis
of the Power Distribution System

"Least Weight" "Least Power
Design Loss" Design

Power
Voltage Range Generated/Dist. Weight Losses Weight Losses

Kg Watts Kg Watts

50-100 V 20 kW/16 kW 64.6 874.0 78.6 735.0

100-200 V 36.8 555 50.0 349.0

200-400 V 30.8 293 42.9 143.0
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where

10 MeV = The damage equivalent 10 MeV proton fluence

(>E) - c(>E +AE) = The isotropic proton fluence having energies in a

small energy increment greater than energy E.

D(E, t) = The relative damage coefficient for isotropic

fluences of protons of energy E on solar cells

shielded by cover glass of thickness t.

The log-log plot discussed above is used to determine 4(>E) - 1(>E +AE).

D(E, t) as well as a thorough discussion of the degradation calculation method

used in this study can be found in Ref. 5. The equivalent 1 MeV electron fluence

was estimated according to:

1 MeV e = 10 MeV p x 3000

The 1 MeV electron fluence was determined for a 0.020 cm cell and 0.008 cm

coverglass. Equivalent 1 MeV electron fluence data was converted to power

degradation using power vs fluence curves found in Ref. 5. A summary of the

radiation calculations is presented in Fig. 11 where maximum power degra-

dation is plotted as a function of time following launch with probability as a

parameter. Probabilities of 50, 70, 90, and 95% were considered.

The following example illustrates how the curves should be interpreted.

Consider the point 950 days following launch on the 50% probability curve.

P/P0 = 0. 92 at this point. Array degradation is expressed as ((1-P/P ) x 100%).

Thus, there is a 50% probability that the array degradation will be 8% or less at

950 days following launch. These calculations are based on infinite back shield-

ing. In reality the back shielding is not infinite and is approximately three

times the thickness of the front shielding. The effect of the non-infinite back

shielding is to increase the array degradation considering infinite back shielding

by about 10%. Thus the effect on the example discussed above would be about

0. 8%.
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5. Uncertainty. This section examines the major sources of

uncertainty and error in predicting the post launch electrical performance of

the array. The analysis method used was developed by Anspaugh (Ref. 6).

Using the JPL M132000 computer program to predict the panel output, an

uncertainty in the prediction of Isc, Voc, and Pm follows:

2 2 2  2
i ao dT n p T + + + e2 (1)

p It  + Ip TT M  I

2 dV dV \2 dV 2oc 1 t 1 t dT 1 oc(dVcoc oc d
VdT tt dT dH dH

oc oc ocp oc
t  p

dV 2

+ + + e (2)
v voc /

P TM

P 2 dV V 2 dl I 2
m oc oc sc sc (3)

(m) oc mp sc mp

The terms appearing in the above equations are defined below:

I = panel current, mA

It = single cell current, mA

H = solar intensity at which solar cell output is predicted, mW/cm

dH = solar intensity uncertainty including simulator intensity

uncertainty when the parametric solar cell data used in

M132000 was acquired and the uncertainty of the solar

intensity incident on the spacecraft.
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a0 = temperature coefficient of short circuit current at the

nearest tabulated (H, T) point in M132000 to the desired

intensity and panel temperature, mXk/C.

a = same as a0, but at the desired intensity and panel

temperature

dT t = cell temperature uncertainty during parametric data

acquisition C

dT = panel temperature uncertainty, C

n = number of cells in parallel on the panel

= uncertainty in measuring solar panel current at Table
Mountain

S = statistical 95% confidence limit of the parametric current

data, mA

eI = current prediction error of M132000, mA

V = panel open circuit voltage, mV
oc

V = single cell open circuit voltage, mV
oc

V P = uncertainty in measuring the solar panel voltage at Table

Cp/TM Mountain

S = statistical 95% confidence limit of the parametric voltage

data, mV

e = voltage prediction error of M132000, mV

P = panel maximum power, mW
m

V = voltage at maximum power, mVmp

I = current at maximum power, mA
mp

Values for the terms appearing in Eqs. (1) and (2) are summarized in Table 13.

These values are appropriate for an incident solar intensity of 140 mW/cm 2
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Table 13. Values for SEPSIT Solar Array Performance Prediction
Uncertainty Calculation @ 140 mW/cm 2 , 520C

dH dH = 0.015
H

a = 0. 09 mA/cm2  dVoct _
0 dT 2. 28 mV/°C

dT t = C dT
V

oc
It = 126 mA P = 522 mV

m

IP = 126 mA dVoc
dn - 0. 25 mV/mW/cm 2

dT = -50 C

dH = 2. 1 mW/cm 2

(-)TM = 0.0115dV

S = 0.017 (dV 0.012I oc
P ITM

e = 0.0136

V = 522 mV S = 0. 86
oc e = 0.78

v

(1 A. U. ) and a solar panel temperature of 520C and when substituted in Eqs. (1)

and (2) give the following values of uncertainty:

dI
sc +2. 94%

I
sc

dV
oc

V = +2. 78%oc

The total uncertainty in the array maximum power can be computed using

Eq. (3). For the SEPSIT solar array at 1 A. U. and 52 "C the following values

are appropriate:

I c = 95. 2 Ampssc

Imp = 84. 5 Amps
mp
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V = 270.3 Volts
oc

V = 214. 8 Volts
mp

Substituting the above values for Isc, I , V c and V together with the

values for the current and voltage uncertainties into Eq. (3) gives the following

array maximum power uncertainty:

dP
max = +4. 8%

max

6. Cabling Interconnection Study. The purpose of this study is to make

a preliminary investigation of various cabling methods to achieve the electrical

interconnection between each solar panel section and the drum slip ring harness.

(a) Cabling Assembly Constraints

(1) Each of the 12 sections is to have an electrically

independent cabling subsystem running from the section

to the slip ring.

(2) Power loss in each subsystem shall be limited to a

maximum of two (2) percent of the nominal

power generated by each section, at 1 AU.

(3) The voltage drops over the subsystem cables shall be

such that the voltages at the slip ring interface shall be

equal for each section.

(4) The cabling shall be sufficiently flexible to not adversely

affect the deployment of the solar panels.

(b) Cable-Section Interconnection

Two approaches were investigated for connecting the electrical

panel sections to the slip ring harness. The first approach considers the con-

nection to be made at the end of the electrical section (Fig. 12), the area

nearest the slip ring, to minimize the cable length required. The second

approach considers the electrical connection at the mid-point of the electrical

section as shown in Fig. 13.
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Fig. 13. Current Flow in Section Jumpers-Midpoint Connection
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Since the eight (8) subsections within the individual sections are identically

configured and are jumpered together in parallel, the conductors (jumpers in all

subsections) would be sized for the maximum current flow of the generated cur-

rent of a subsection for the end connection scheme. To reduce the current flow

in the conductor and allow a corresponding decrease in conductor size, the

electrical connection at the mid-point is the preferred approach. Furthermore,

the constraint associated with maintaining equal voltage drops for each section

introduces a problem when utilizing an electrical interface at the end of the

section. The allowable power dissipation assuming a maximum power output of

1625 watts per section is Pd = 0.02 X 1625 = 32.5 watts.

The cable loop resistance Re = 32.5 - 0. 632 ohm
(7. 17)2

or one way 0.632 = 0. 316 ohm

In other words, for the same I current, the one way resistance of the
mp

cable from each section to the slip ring is 0.316 ohm. Because of extremely

small distances from the nearest corner of the adjacent section to the slip ring,

as compared to the outboard sections, a resistance of this value will be

required. Rather than designing the cable for this resistance value to main-

tain equal voltage drop for the sections, it is suggested that this cable should

be fabricated using the same material as the copper conductors of the other

cables and an auxiliary resistor added in series to the inboard section circuit.

Connection at the mid-point of the electrical section provides the following

advantages:

(1) Reduced current flow in the subsection jumper conductors of

1/2 maximum section current.

(2) Provides symmetrical thermal gradients over the section and

(3) Provides symmetrical current which cancels the overall magnetic

fields for each section.

It is proposed to use six (6) separate and insulated 2. 9464 mm (0. 116 inch)

wide conductors, parallelled at each end to achieve the required resistance.

This design provides advantages such as the thermal dissipation is spread over

a large area; the 2. 9464 mm (0. 116 inch) conductor is readily available and

the direction of current flow can be reversed in adjacent conductors providing
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magnetic field cancellation. The proposed configuration is shown in Fig. 14

where two 0. 8890 mm (0. 035 inch) temperature transducer lines are included

in the "to" and "from" cables required to interconnect each section.

As shown in Fig. 13 the complete cable assembly for each section con-

sists of 2 identical cables. These will be separate, i.e., not bonded. Spot

bonds could be employed along the length so that the amount of separation could

be controlled without causing stresses on the conductors.

The analysis above is based on the longest cable run to the mid-points

of the farthermost section. To achieve the same resistance to the mid-point of

the center sections which have a cable run of approximately 12. 4358 m (40. 8 ft),

only 4 parallel conductors of 2.4130 mm (0. 095 inch) width with the same

thickness would be required. The closest sections to the slip ring harness

require only one 2. 9464 mm (0. 116 inch) wide conductor to the midpoints. If

it is desired to have 2 conductors in parallel for redundancy, then the widths

could be halved. Detailed analysis of the cabling requirements appears in

Reference 7.

30.2768

1.0160 1.2700

S I I I I I 1 1.5748

0.0685 I 01K K- 1
TYP 2.9464 0.8890 TYP

k3.9624
N POWER I SIGNAL'

NOTE: DOTS AND CROSSES DENOTE CURRENT FLOWS
OUT OR INTO THE PLANE OF THE PAPER
RESPECTIVELY FOR MAXIMUM MAGNETIC
FIELD CANCELLATION.

DIMENSIONS ARE IN MILLIMETERS

Fig. 14. Proposed Flat Cable Assembly
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7. Thermal Analysis. The thermal analysis of the solar panels is

complicated by the fact that the SEPSIT cell blanket contour cannot be predicted

with great certainty. However, prior JPL experience with rollup panels

strongly suggests that the blanket contour, neglecting geometrical edge effects

along the drum and along the leading edge member, can be approximated by

the so-called one-dimensional edge curl model shown in Fig. 15. The cross

section of the blanket model through a row of cells is regarded to be a circular

arc; whereas, the cross section through a column of cells would appear as a

straight line.

If the thermal edge effects and conduction are neglected, the temperature

along a column of cells is constant. The relationship between the temperature

of cell column i and the temperatures of the other. cell columns is given by

the steady-state heat balance for column i, that is:

ql + qZ + q 3 
= q4 + q 5  (4)

where q1 = solar flux absorbed by direct solar incidence,

q2 = solar flux absorbed as a result of reflections from other cell columns,

q3 = infrared flux absorbed due to thermal emission from other

sources such as cell and spacecraft reflections,

q4 = infrared flux emitted by front (cell/coverglass) and back

(substrate) sides of cells in column i,

q5 = electrical power per unit area of column i extracted by space-

craft electrical load.

The above expression neglects the conductive coupling (a conservative assump-

tion) which exists between cells by virtue of the electrical connections and the

cell substrate.

The mathematical equivalent of Equation (4) is:

N N 4
aS max (cos Oi, 0) +j apGj, i S max (cos , 0) +l E(t.) E

j= ( j,)i S j , 1  TJ

= E(t.) + s (ti)] oTi4 + (P/A) R. 4j(Ri) 4(t.) (5)
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where T = absolute temperature, K

t = temperature, oC

a= solar absorptance of cell/coverglass

P = solar reflectance of cell/coverglass = 1 - a

E = emittance of cell/coverglass, function of t

E = back side (cell substrate) emittance, function of t

F. = infrared form factor from column j to column i
ji

G. = solar form factor from column j to column i
J, i

- = Stefan-Boltzmann constant

S = local value of solar irradiance

6 = angle between cell area normal and a solar ray

R = effective relative irradiance S max (cos 6, 0) 1-r()-S e l -r(O)

r = effective reflectance of coverglass (estimated by the Fresnel
formulas and Snell's law for fused silica), function of 0

= cell relative efficiency, function of R

S= cell relative efficiency, function of t

(P/A)o = solar cell electrical power output per unit area for R=l and t = 60OC

N = number of cell columns

and subscripts i, j, and $ denote column i, column j, and earth, respectively.

Equation (5), in reality, represents a system of non-linear, simultaneous

equations (since the index i can run from 1 through N). It should be noted,

however, that the equations become uncoupled if q 2 and q3 (the second and

third terms, respectively) vanish as they do when the blankets are flat. To

determine the effect of these terms, solutions were obtained with q 2 omitted

and with qZ included with G. i matrices spanning the range of fully specular

to fully diffuse solar reflections. The test was then repeated with q 3 omitted.

For edge curl angles of 10 degrees or less, the net effect of q 2 and q 3 amounted

to only a few degrees C. On the basis of this information, subsequent calcula-

tions were simplified considerably by omitting these terms.
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For the purpose of this analysis, the pertinent thermophysical and

electrical properties of Mariner '71 cell/filters were assumed. These data,

obtained from JPL TM 33-473, are regarded to be representative for the type

of cell/filter which may ultimately be selected. The General Electric,

66 watt/kg, rollup panel prototype, for example, utilized an 0. 020 cm, N/P,

2 ohm-cm cell with an unfiltered, 0. 020 cm coverglass. A flight version

would probably use a coverglass equipped with a #415 blue filter. Except for

the thickness of its components, the Mariner '71 cell/filter combination is

identical.

The panel blanket substrate used in the thermal model is Kapton. Cells

are assumed to be bonded onto the substrate with G. E. SMRD-745 adhesive.

Test data indicates that the emittance for the substrate/adhesive combination

can be estimated by

gs(t) = 0.74 - 123 (t-27).
123

Working under the assumption that only soft-solder interconnect technology

will be used for the construction of the rollup panels, reliability considerations

suggest the adoption of 140°C as the maximum permissible solar cell blanket

temperature. The simplest temperature control scheme is to rotate the

panels about their longitudinal axis, when necessary, so that the cells are

exposed to solar rays at something less than normal incidence.

The results of the analysis are summarized in Figs. 16 and 17. In

Fig. 16, it is seen that solar panel rotation is not required at heliocentric

distances greater than 0. 635 AU since the average panel temperature will be

less than 140 0 C. But for lesser heliocentric distances, the required angle

of rotation rapidly increases to 73.4 degrees at perihelion (0.34 AU). Edge curl

effects do not become significant until the solar panels are rotated. Thus, only

the results for heliocentric distances of less than 0.635 AU are shown. At

greater distances, temperature deviations amount to less than 2 0 C for edge curl

angles of up to 10 degrees.
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Figures 16 and 17 show that rotation of the solar panels can be used

successfully to achieve temperature control provided the blankets can be kept

fairly flat or can be made to withstand large temperature deviations. It should

be kept in mind, however, that even with edge curl angles of 10 degrees, the

solar panels will experience large temperature deviations only at heliocentric

distances less than 0.635 AU--well past the point of Encke rendezvous.

8. Spacecraft mission trajectory. The spacecraft trajectory for

950-day Encke rendezvous mission is shown plotted in Fig. 18 and the data is

tabulated in Table 14 which identifies the Heliocentric distance associated with

mission time for day zero through Encke rendezvous in 20-day increments.

C. Array Configuration and Performance Prediction

To provide solar array power capability of 20 kilowatts at 1 AU, the

2.5 kW engineering model was essentially scaled up to meet the new power

demand. 422,400 solar cells are required to generate the necessary power.

The cells are 2 ohm-cm N on P type, 2 cm square by 0.020 cm thick, selected

in accordance with the requirements and constraints identified in Section II of

this document. Each cell is individually covered with 0.008 cm microsheet

cover glasses. The cells are mounted on a flexible Kapton substrate and elec-

trically assembled into 12 identical sections designed to generate equal power

outputs. The solar array power requirements are summarized in Table 14. To

meet the voltage range required during the mission when the solar array is

normal to the sun angle, 550 solar cells are connected in series and 768 cells

are connected in parallel. The combined power producing capability of the

12 electrical sections (550 series cells by 768 parallel cells) is 19,002 watts

when measured at 1 AU and at a nominal temperature of 52.0 0 C. The power

uncertainty margin is plus or minus 4.8 percent. The total blanket area

required to accommodate the cells and cables is 2004 ft 2 (9.77 watts per square

foot). Typical dimensions of each solar panel is shown in Fig. 19.

The solar array power output prediction of 19,002 watts at 1 AU beginning

of mission includes a power margin of approximately 13.5 percent assuming

the power required at one (1) AU is 16,385 watts. The 13.5 percent power

contingency is assumed for cable losses, space and solar flare degradation
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Table 14. Heliocentric Distance versus Mission Time

Heliocentric Heterocentric
Time Time

Distance Distance
(days) (AU) (days) (AU)

0 0.99472 520 3.34214

-3.34275

20 1.01763 540 3.34148

40 1.09850 560 3.33327

60 1.22528 580 3.31740

80 1.37968 600 3.29376

100 1.54406 620 3.26217

120 1.70920 640 3.22245

140 1.86989 660 3.17434

160 2.02348 680 3.11756

180 2.16868 700 3.05175

200 2.30493 720 2.97648

220 2.43208 740 2.89123

240 2.55017 760 2.79538

260 2.65932 780 2.68816

280 2.75974 800 2.56860

300 2.85161 820 2.43549

320 2.93514 840 2. 28729

340 3.01052 860 2.12195

360 3.07790 880 1.93671

380 3.13743 900 1.72773

400 3.18925 920 1.48955

420 3.23344 940 1.21432

440 3. 27010 950 1.05954

460 3.29928

480 3.32101

500 3.33530
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which the array is expected to encounter during the mission. The predicted

array power was generated utilizing the JPL M-132 computer program which

includes solar array fabrication losses. Table 15 presents the power available

and the degradation factors associated with power estimates at three time

periods of the mission. The power profile of the array for the 950-day mission

is shown in Fig. 20. Power performance degradation due to solar flare

environment is based on the selection of 50 percent probability that the degrada-

tion will not be greater than 8.8 percent at the end of the 950-day mission to

the comet Encke.

The solar array layout within the individual electrical sections is shown

in Fig. 21, which basically configures the section into eight identical and inter-

changeable subsections (modules) consisting of 550 series connected submodules.

The modules are designed in this manner so that they can be fabricated and

tested separately and at the end of the assembly process, the modules or sub-

sections can be mated to form a continuous blanket. The submodule design

which is shown in Fig. 22 consists of eight parallel cells interconnected by a

flexible expanded silver mesh.

Table 15. Solar Array Performance Prediction

Mission Day 1 Day 600 Day 950
Time (1 AU) 3.3 AU (1 AU)

Power available
Measurement 4 . 8 19, 002 2, 266 16, 759
Uncertainty watts watts watts
Not included

Degradation and 2% cable losses 6% solar flare 8. 8% solar flare
other losses 1% UVdeg. 2% cable losses degradation
applied 2% UV deg. 2 % cable losses

4% UV degradation

Total 3% Total 10% Total 14. 8%
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An independent cable from each section provides power to the slip ring

assembly and to the connector interface as shown in Fig. 23. Each section

cable shall be provided with a multiple conductor in flexible flat cable mechan-

ically secured to the array substrate. Each cable section shall be sized to limit

worst case power loss to two percent at rated value; provide equal voltage drop

between each section and the solar array connector interface. The cable con-

struction shall use several conductors in parallel to reduce the voltage drop,

rather than one wide conductor of equivalent cross section. Detail information

on cabling design and analysis is presented under Cabling Study, Section V, B, 6.

S/A SECT 1 S/A SECT 2 S/A SECT 3

AAND INST
SSI PWR SECT I AND 2 PWR

S-2 PWR AND INST F 52 PWR

S-1 PWR AND INST 53 PWR SECT 3 AND 6 PWR

SLIP
RING 56 PWR CONN. SEP
ASSY INTERFACE MODULE

-4 PWR AND INST 54 PWR SECT 4 AND 5 PWR

55 PWR

S-5 PWR AND INST

S-6 PWR AND

I2 LAYER FLAT CONDUCTOR
CABLES (TYP)

S/A SECT 4 S/A SECT 5 S/A SECT 6 6 NO. 16 AWG FOR 200-400 V
6 NO. 16 AWG FOR 200-400 V RET
4 NO. 20 AWG FOR INSTRUMENT

Fig. 23. Solar Array Cabling
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VI. RELIABILITY CONSIDERATIONS

A survey of rigid foldout solar arrays shows that inflight failures for this

type of array due to mechanical degradation have been kept to a minimum. How-

ever, the rigid foldout solar panel is of relatively simple mechanical design

when compared to the rollup panels now being considered. Reliability problems

associated with mechanical aspects of this new type panel will be considerably

more complex and thus more emphasis must be placed on analysis and testing

of the rollup panels. Electrical reliability considerations are basically the

same for basic types of panels.

The mechanical considerations can be made to correspond to the following

three classifications:

(1) Stowed position

(2) Deployment

(3) Deployed position

In the stowed position for launch and prior to deployment, temperature

and vibration are the major degradation mechanisms to be considered.

Examples of vibration effects would be fractured solar cells and open cell and/or

module interconnects. In addition to vibration, compressional forces on cells

may also cause cell fracture. It will be important with the present designs to

allow for heat transfer from within the rolled configuration since soldered con-

nections could be subject to degradation resulting from temperature effects.

The reliability problems for the rollup solar panels during deployment

are:

(1) Pyrotechnic release failure.

(2) Panel misalignment causing

(a) Jamming

(b) Cell destruction on panel edge.

(3) Motor failure (functional redundancy should be considered).

(4) Adhesion and/or friction which strips off cells.
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(5) Cabling - Connectors

(6) Failure of the prestressed steel to form boom tube.

In the deployed position, there are two major areas of mechanical

reliability concern for the deployed solar panel. They are panel tension control

and oscillation damping.

The single point failure modes for the rollup array are:

HARDWARE FAILURE MODE

STORAGE DRUM DRUM(s) Fail to rotate

BI-STEM Actuator Boom fails to extend

Premature Extension

Boom retracts fully (in orbit)

Length not stable (boom erected)

Solar Blanket Array Loss of attachment to storage drum
or leading edge

Outboard End Caps Failure to release (hinge failure)

Slip Ring High resistance (brush or ring)

NEGATOR Motor Loss of required tension

Further analysis is required to determine the failure modes of a single

cell, a module, or an electrical section and their subsequent effect on solar

array power performance.
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VII. AREAS REQUIRING FURTHER STUDY

A. Array Blanket Design and Fabrication

Evaluation of the array blanket design used on the GE test model indicated

the need for improvements concerning fabrication, repair techniques, array

flatness and modular assembly techniques. Listed below are task descriptions

for introducing these improvements:

(1) Develop fabrication processes that will avoid substrate wrinkling

and possibility of introducing bond voids.

(2) Develop techniques for repairing damaged cells or interconnects.

Determine the permissible extent of repairs associated with factory

or field incurred damage. Determine the tool, fixtures and pro-

cedures for effecting repairs for factory and field conditions.

(3) Investigate array blanket design features which will provide assur-

ance of array flatness in the deployed state.

(4) Investigate modular assembly techniques for expediting the overall

array assembly process.

B. Cell, Coverglass and Interconnect Protection

Testing of the engineering test model solar array indicated the need for

improved protection for the cells, coverglass and interconnects.

(1) Cushion Design - Determine practical cushioning techniques based

on the engineering test results and the effort of others in order to

minimize cell and coverglass breakage. Techniques to be con-

sidered include modifications to the existing silicone rubber buttons,

embossing of Kapton substrate to provide cushion zones, the use of

perforated foam rubber matting bonded to the Kapton, and the appli-

cation of individual padding discs.

(2) Handling Procedures - Define the procedures and handling equip-

ment necessary to insure that damage to the array is minimized.

Develop process and test flow diagrams as an aid in describing

various handling conditions likely to be encountered.
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C. Temperature Control Techniques and Analysis

(1) Investigate techniques for increasing the backside emissivity of

rollup array blankets.

(2) Blanket stiffness as a function of temperature:

Data on the blanket bending characteristics are needed to design

rewrap devices for low temperature applications.

(3) Thermal bending prediction:

Collect and analyze available data for the thermal bending of Bi-

Stem deployable booms. Develop a method for predicting thermal

deflection at the tip of Bi-Stem boom elements. Produce and

present thermal bending predictions for Bi-Stem book elements with

boom length, diameter, element thickness, material, and intensity

of solar illumination as parameters.

D. Cabling Design

The GE engineering test model array utilized a copper-clad Kapton array

blanket which was etched away in certain regions to form the required bus bar

configuration. A significant disadvantage of this approach concerned the wrink-

ling of the Kapton, probably as a result of stress relief, during the etching

process. The tasks required to develop an alternative approach are as follows:

(1) Investigate alternative bus bar designs considering the use of copper

clad Kapton with suitable pressure sensitive adhesives. Evaluate

the most practical approaches and conduct sufficient testing to

determine feasibility.

(2) Establish fabrication methods and the means for electrical inter-

connection with solar cell strings.

(3) Determine the effects of long term space environment on cable

insulation and conductors.

(4) Evaluate methods for minimizing the electromagnetic forces

between conductors.
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E. Slip Ring Performance Investigation

The performance data taken on the slip ring during the environmental test

program of the GE test model array carried out under JPL Contract 952314

indicated noisy performance on at least two occasions. This noisy performance

shall be investigated for the purpose of determining if the performance anoma-

lies have any effect on the performance of the slip ring design in a rollup solar

array on a solar electric interplanetary mission.

F. Instrumentation

Rollup solar arrays pose special constraints on flight instrumentation.

The thickness of the devices is limited to permit proper wrap of the array

blankets around the drums. Particular tasks aimed at developing adequate

instrumentation techniques are as follows:

(1) Select thermistor devices for flight temperature measurement of

solar cells on the array blanket. Develop necessary mounting,

bonding and signal lead attachment techniques consistent with the

thickness constraints of the solar array. Conduct sufficient testing,

particularly thermal cycling, to ensure design adequacy.

(2) Establish diode requirements with particular emphasis on thickness

constraints, lead attachment, environmental extremes and power

rating.

(3) Investigate diode procurement with the required specifications and

develop installation techniques relative to its mounting on the array

blanket.

(4) Conduct environmental testing of diodes to determine adequacy of

design.

G. Dynamic Loads of the Stowed Blanket

One of the principal loads to be sustained by rollup solar array structure

in the stowed configuration is the dynamic loads produced by the solar array

blankets. Test data accumulated on JPL/GE 66 Watts/Kg solar array (Contract

952314) show that the amplification factor at the outer wrap of the stowed solar

array blanket is approximately 2 which is significantly lower than the 10 or 12
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conventionally used in structural design analysis. Data on dynamic loads

produced by the solar array blankets is needed to design lightweight solar array

structures. The task is to provide design data in the form of blanket loads as

a function of frequency in the range from 5 Hz to 100 Hz for the solar array

blankets to be obtained from the engineering test model fabricated on Contract

952314. This data will be for the two cases of excitation parallel to the drum

axis and perpendicular to the drum axis.

H. Environmental Tests on Solar Cells

Perform additional environmental tests on 0.020 cm thick N on P solar

cells over the ranges of temperature and intensity predicted for the Encke

mission.
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